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Review Article 
Classical Fluids in Constant External Fields and the 
G en era I i zat io ns of the 0 r nstei n -Zer n i ke Relation 

W. JONES 

Department of Physics, the University, Sheffield. U. K. 

We consider the equilibrium of pure and binary fluids in constant external fields by directly 
setting up the appropriate distribution functions of Statistical Mechanics. The equilibrium 
density gradients are obtained in terms of the partial structure factors o i j  and by connecting 
these results with the usual thermodynamic equilibrium conditions we obtain elementary 
proofs of all the expressions, for the al j  in terms of thermodynamic quantities, usually derived 
by Fluctuation Theory. We also derive a general form of the Nernst-Einstein relation between 
mobility and diffusion constant. 

The results for the density gradients are exemplified by brief discussions of fluids in gravita- 
tional fields and electromigration in a binary alloy. 

1 INTRODUCTION 

The problem under discussion is that of a classical pure or  multi-component 
fluid under the influence of uniform external fields, so that each particle of 
a particular species i suffers the same constant force Fi. In considering the 
equilibrium of the fluid under these forces one may approach the problem 
thermodynamically, as, for example, Landau and Liftshitz' do in finding 
the change in concentration with height for a solution in the field of gravity. 
By imposing the condition that the chemical potential of every component 
is constant throughout the system they are able to find an expression for the 
concentration gradient (their final expression is valid, however, for weak soiu- 
tions only). Alternatively, one can approach the problem directly by means 
of statistical mechanics, obtaining the equilibrium concentration gradients 
in terms of the distribution functions, and it is this latter approach we shall 
pursue here. As we shall see, this brings us three major advantages: 

i) We straightforwardly obtain simple expressions for the concentration 
gradients in terms of the long wavelength limits aij of the partial structure 
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I00 W. JONES 

factors, that is, in terms of physical quantities which are in principle directly 
measureable in the laboratory. 

ii) The form of these expressions can be interpreted very readily in physical 
terms. 

iii) By connecting the equilibrium conditions obtained by means of 
statistical mechanics with those obtained thermodynamically one is afforded 
elementary proofs of all the results for the aij,  in terms of thermodynamic 
quantities, usually obtained by employing fluctuation theory.2 The proto- 
type of these relations is of course that shown by Ornstein and Zernike to 
exist between the long wavelength limit of the structure factor of a pure 
fluid and its isothermal compressibility. A useful form of the general Nernst- 
Einstein relation between the mobility and diffusion coefficient will also be 
shown to follow in simple fashion. 

As far as applications of the equilibrium conditions to particular cases is 
concerned, we shall briefly consider a solution under the action of gravity, 
showing how the full generalization of the Landau-Lifshitz result follows 
almost immediately. As a second important example, we shail discuss the 
reference of our considerations to electromigration, the transport of the. 
ions of an alloy when an electric current is p a ~ s e d . ~  This arises because each 
individual ion suffers a driving force consisting of the applied electric 
field and an “electron wind” from the scattering of the conduction electrons 
by ions. Thus by observing the electromigration we hope to obtain informa- 
tion on the scattering, and so improve our knowledge of electronic transport 
processes. 

The plan of the review is as follows. After introducing the many-particle 
distribution functions we shall outline the physical basis of the approach 
by showing how it leads to the Ornstein-Zernike relation in a simple way. 
Before proving in Section 5 the generalizations of this relation to binary 
fluids, in Section 4 we give a formal proof of the results for the equilibrium 
concentration gradients. In Section 6 we consider the equilibrium as a 
balance between transport of particles under the driving forces of the external 
field and diffusion in the reverse direction. This results in a form of the 
Nernst-Einstein relation involving the long wavelength limit of the con- 
centration-concentration structure factor See. Finally, in Section 7 we dis- 
cuss the particular cases of (i) a solution in a gravitational field and (ii) a 
liquid alloy in which electromigration is taking place. 

2 DISTRIBUTION FUNCTIONS IN THE PRESENCE OF 

We may write the many-body potential governing the motion of the N 
particles of the fluid as 

EXTERNAL FIELDS 

@(rlrZ...rN) = Oo(rlrZ...rN) + Ol(r1r2...rN) (1) 
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CLASSICAL FLUIDS IN CONSTANT EXTERNAL FIELDS 101 

where cDo is the many-body potential of the unperturbed fluid and 
N 

(D1(rlr2 ... rN) = Firi 
i =  1 

where Fi is the steady external force on particle i. We can now write down 
the N-particle distribution function by using a standard result of Statistical 
Mechanics.’ The probability-density for the configuration rl,  r2,  . . . , rN is 

n(rl, r2, . . . , rN) = A exp[-(J@] 

A 
= -no(rl, r2,...,~N)exp[-BcD~(r~,r,,...,~N)1 (3) 

where f i  = l/kBT; A is constant for given Fi and A o ,  no correspond to the 
case where all external forces are zero. The number-density nl(rl) of particles 
of type 1 may now be found by integrating out the positions of all other 
particles. Let us introduce the quantity ul(rl) through 

A0 

so that, evidently, nl(rl) K exp[ -bul(rl)]. We can see that 

so that u1 may be interpreted as a “potential of mean force.” 
We shall work throughout to first order in the external forces Fi. In the 

interior of a Auid of volume u, where the unperturbed mean density is con- 
stant, Eq. ( 5 )  may then be written as 

or 
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I02 W. JONES 

so that we may put 

ul(rl) = r2, ..., rN)nO(fl, r2, ..., rN)dr2, ..., dr, (8) i 
We thus see that to first order in the Fi the quantity ul(rl) is simply the mean 
potential energy of the unperturbed fluid in the external field when there is 
a particle of type 1 at rl. 

3 THE ORNSTEIN-ZERNIKE RELATION 

We are now in a position to illustrate the basic approach of this review by 
obtaining the relationship between the isothermal compressibility K ,  and 
the long wavelength limit of the structure factor. Consider each molecule of 
a pure fluid to be subjected to a steady force F, for definiteness the force of 
gravity. Let the equilibrium number density at height x be n(x) and let the 
pair distribution function of the unperturbed fluid be g(r), so that the prob- 
ability density for finding a particle at a distance r from some given particle 
is fig@), where f i  is the unperturbed mean density. It can now be shown that, 
to first order in F ,  

- -- 1 dn - 
ndx kgT {I + n i[g(r) - lldr}. (9) 

A formal proof of this will be given in the following section but the relation- 
ship may readily be understood as follows. From the results of the last 
section n(x) = noe-pu(x) where no is the density at x = 0 and u(x) is the mean 
change in potential energy on moving a molecule from zero altitude to x. 
This change in potential consists of two terms, the first being the work Fx 
done against the direct gravitational force on the molecule. To see the origin 
ofthe second term, we note that the molecule creates a disturbance n[g(r) - 11 
in its surroundings and this disturbance is also moved from zero altitude to 
x with a consequent change in potential energy. Hence 

u(x) = Fx 1 + n [g(r) - l]dr i s  3 
from which Eq. (9) follows. 

height as 

so that the compressibility is 

But elementary hydrostatics also tells us that the pressure varies with 

d P =  -Fndx (1 1) 

1 dn I dn 
n d p  F n 2 d x  

K T  = -_  = ~- 
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CLASSICAL FLUIDS IN CONSTANT EXTERNAL FIELDS I03 

This is the isothermal compressibility since at equilibrium the temperature 
will be constant throughout the system. We already have l/n(dn/dx) from 
Eq. (9), whence we find 

n k , T K ,  = 1 + n [g ( r )  - l)]dr (13) s 
which is the famous Ornstein-Zernike relation. 

4 EQUILIBRIUM CONDITIONS IN A BINARY FLUID 

The following derivation of expressions for the equilibrium density gradients 
in a binary fluid may easily be specialised to a pure fluid or generalized to a 
multi-component system, as required. For simplicity we shall assume all 
external forces F, to lie in the x-direction; again, this restriction is readily 
removed if necessary. 

From Eqs. (2) ,  (4) and (7) we find the concentration gradient of particles 
of type 1 to be given, to first order in the external forces, by 

(rl ,  T 2 ,  . . . , r~)dr2 ,  . . . , dr, (14) 
1 dn, Fl 

n ,  dx k,T k,T , ax, 

where F i  is the component of the force in the x-direction, so that Fi  = Fig. 
Let us calculate the contribution of all particles of type 2 to the second term 
on the right-hand side. We first introduce the number concentration c, of 
particles of type i, so that n, = cin, and also the partial distribution function 
gl2(rI2) such that in the thermodynamic limit the probability density for 
a particle of type 2 at r2,  given that there is a particle of type 1 at r, is 
c2ng12(r12). Thus in the limit N ,  u + 00, N/u + n 

The contribution in question is therefore 
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I04 W. JONES 

We may perform a partial integration by noting first that x1 ag/dxl(r12)dr, 
= 0, so that 

We can similarly calculate the contributions of particles of type 1 to finally 
obtain 

In terms of the long wavelength limits of the partial structure factors, 

aij = 1 + n [g,,{r) - l]dr, (19) s 
we have 

From these we obtain the gradient of the logarithm of the total number 
density as 

1 dn 
n dx -- - - PCclFl(clal1 + c2a12) + C2F2(CZU22 + c1a12)l (21) 

Noting that 

1 dni 1 dci 1 dn 
n idx  c idx  n d x  

+ -- and c1 + c2 = 1 --=-- 

we can obtain the concentration gradient from Eqs. (20) in the form 

where C = c1/c2. Anticipating the results of the following section this may 
be rewritten in terms of thermodynamic quantities. Introducing the mole- 
cular volumes u1 and u2 and the Gibbs free energy per particle G, we shall 
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CLASSICAL FLUIDS IN CONSTANT EXTERNAL FIELDS 105 

see that 

1 dC 
C dx 
_ _ -  - BCu2F1 - v,F,lnf 

where the quantity f is 

(24) s c c  
f = - = 1 +  c1c2(a11 + a22 - 2a,J 

ClC2 

or, in thermodynamic terms, 

5 GENERALIZATIONS OF THE ORNSTEIN-ZERNIKE RELATION 

In general there must be a pressure gradient in the system at equilibrium 
to balance the effect of the external forces; in fact, 

6 p  = ($)"2,:n1 + ($)nl.T 6% = (n,F, + n2F,)6x (26) 

or 

nl(2) [L3] - n2(*) [L3] = n,F1 + n2F2 (27) 
n2.T n l  dx n i , T  n2 dx 

We can impose the condition dnJdx = 0 by setting 

so obtaining the "partial compressibility" 

with a similar expression for n2(8p/i?n2),l, T .  By using 

we now immediately find 
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1 Oh W. JONES 

the expression for the isothermal compressibility K T  as given by Kirkwood 
and Buff.4 

Given the total compressibility from experiment the partial compressibili- 
ties may be found from data on the variation of the total number density n 
with concentration. Varying ci at constant temperature and pressure we 
have 0 = ( d p / d n l ) n 2 ~ , 6 n ,  + (dp/8nZ),,.,6nz and the expressions of the form 
(29) then yield 

(”) = -  cn + cl(an/dcl)P,Tl ._____ = - c1 + C l h l  - a12)l (31) 
P . T  n + c2(’3ddcZ)F‘, T 1 + c 2 b z z  - a121 

This also gives the ratio of the molecular volumes. These are defined such 
that 

1 = n l u l  + n Z v Z  (32) 

and, with P,  T,  N constant 

6u 6N1 
- = -(vl - u2) = Gcln(v1 - u 2 )  
U V 

(33) 

when 6N1 particles of type 2 are replaced by 6N1 particles of type 1. From 
(32) and (33) we can show that 

so that by reference to (31) we can see that 

_ -  0 2  1 + cl(a11 - 4 2 )  

1 + c 2 b 2 2  - 4 2 )  
- 

v1 
(35) 

Let us next examine the significance of the equilibrium conditions pi(x) 
- F i x  = constant, where pi(x) is the value of the chemical potential of the 
unperturbed fluid with the values of P and T holding locally about position 
x. With n2 held constant throughout the system by setting F2 according to 
Eq. (28) we have 

Comparison with the expression for dn,/dx given by substituting Eq. (28) 
in (20) now yields 
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CLASSICAL FLUIDS IN CONSTANT EXTERNAL FIELDS 107 

and 

By using 

we may confirm that these relations are in agreement with Eq. (29). 

system by setting 
Instead of n, constant, we can impose constant pressure throughout the 

clF1 + ~ 2 F 2  = 0 (39) 
as can be seen from Eq. (26). Equation (22) now gives 

Wherefis defined by Eq. (24). On the other hand, if P is constant, 

pi(x) - Fix  = constant 

gives 

and hence 

1 c2 kB 

S C C  

Since the Gibbs function per particle is G = plcl + p 2 c 2  Eq. (25) now 
follows. 

We finally observe that given Eq. (35), Eq. (23) now follows readily from 
Eq. (22). 

6 THE NERNST-EINSTEIN RELATION 

When density gradients (assumed in the x-direction) are set up in a binary 
fluid, diffusion takes place and, as is well known,5 when no transport of total 
mass takes place we can describe the situation by a single constant D, the 
interdiffusion constant. Introducing the drift velocities v i ,  mass densities 
p, = mini and mass concentrations si (so that the total mass-density is 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



108 W. JONES 

p = p1 + p 2 ) ,  the mass flux of particles of type i is 

where we have noted the fact that dpldx = 0. Thus we evidently have a 
relative drift velocity of 

In terms of the number concentrations cir  the mass concentrations are si = 
micin/l; thus while si/ci can vary with position, we have s J s 2  = mlcl /m2 c2 = 
rn,/m2c and Eq. (44) may be rewritten as 

Supposing now that constant driving forces Fi are applied to a binary fluid, 
we can expect that after an initial transient the particles of type 1 will have 
a steady drift velocity u relative to these of type 2, the driving force on any 
particle being opposed by a mean frictional force : 

F1 = ? l V  (46) 
Where qi is an inverse mobility. We shall take the total external force to be 
zero so that the total mass transport is zero, and also c l F l  + c2F2 = 0 
whence 

C l ? l  = C2?2  = v 
As the concentration gradient builds up back-diffusion will take place until at 
equilibrium o = vD,  as given by Eq. (49,  so that 

(47) 

F ,  D dc D dcl v =  -=--=-- 
~1 C d x  ~ 1 ~ 2  dx 

On comparing this with Eq. (40) for the same situation it is evident that 

with a similar relation for q 2 .  
For isotopic diffusion f = 1 since a , ,  = u 1 2  = u22 = u and 
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CLASSICAL FLUIDS IN CONSTANT EXTERNAL FIELDS I OY 

As a special case of this, we consider an isolated atom of type 1, when 
qID/kBT = 1, and then let the mass difference go to zero, when D becomes 
the self-diffusion coefficient. The mobility q;’ is then to be interpreted as 
that of an individual particle singled out from the N - 1 other identical 
particles by the application of a driving force to it, and to it alone. 

7 APPLICATIONS 

a) Fluid in gravitational field 

In this case we simply put F ,  = -mlg, F ,  = -m,g where m,, m, are the 
particle masses and g the acceleration due to gravity. In terms of thermo- 
dynamic quantities we immediately obtain from Eq. (23) the full generaliza- 
tion of the result for dilute solutions given by Landau and Lifshiftz.’ We 
find 

For a dilute solution (c, -, 1, f- 1) 

which is the Landau-Lifshitz result. As they remark, this is the usual baro- 
metric formula corrected according to Archimedes’ Law. 

For isotopes, we write Am = ml - m2, m = c , m l  + czm,, a,, = a,, = 
a , ,  = a and obtain from Eq. (51) 

- 

- (c,Am + Ma) 
1 dnl 

n l  dx k B  T 
(53) 

While this involves the compressibility, we have u1 = u, ,f = 1 for an isotopic 
mixture, and so Eq. (42) becomes 

or 
= , - g A m l k e T  

0 

irrespective of the character of the interactions between the particles. 
(54) 

b) Electromigration 

Consider the model of an alloy in which the ions are classical particles. 
When an electric current is passed ion i is acted upon by a total force we 
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110 W. JONES 

write as F i  = zT8, where B is the electric field and z: an eflectiue charge 
which takes account of the force due to the scattering of the conduction 
electrons by the ions (the “electron wind.”) It is of particular interest to 
attempt to derive z: from experiment in order that comparisons with theo- 
retical calculations of the effect of the electon scattering can be made. We can 
either measure the equilibrium concentration gradient or the relative drift 
velocity v long before equilibrium. Since the overall charge neutrality of the 
system implies c ,F ,  + c2 F 2  = 0 we have in terms of the concentration 
gradient (see Eq. (40)) 

while from Eqs. (46) and (50), we have in terms of the drift velocity 

In earlier disc~ssions,~ the factor ,f-’ does not appear in Eq. ( 5 5 ) ,  and 
similarly6 for the factor c21fin Eq. (56). These factors can be very different 
from unity’ and in Na-Cs the difference is particularly marked, as Figure 1 

Cr ( * I  e N,, 
FIGURE 1 f = Sc‘/c,c2 for Na-Cs, from the data of Ichikawa et a/.8 
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CLASSICAL FLUIDS IN CONSTANT EXTERNAL FIELDS 1 1 1  

shows. The measurement of electromigration in this system would for this 
reason be particularly interesting. 

One final point is that since the electron scattering will depend on the 
environment of the ion the z r  and the electromigration driving forces will be 
configuration dependent. The present approach offers a hope of discussing 
this case, as we attempt elsewhere.’ 

8 S U M M A R Y  

By directly applying the techniques of statistical mechanics, we have ob- 
tained expressions for the equilibrium concentration gradients in pure and 
binary fluids under the influence of uniform external fields. As we have seen 
these results are very readily interpreted as simply replacing the external force 
Fi  in the elementary expression l/n,(dn,/dx) = Fi/kB T by the rnean,fbrce - ?uL/ 
J x  on an entity composed of particle i and the disturbance, described by the 
pair functions, it causes in its surroundings. This may be regarded as fully 
generalizing the correction to the barometric formula by means of Arche- 
medes’ Law we found in Eq. (52). Our final results also have the merit of being 
expressed in terms of the long wavelength limits a,, of the partial structure 
factors, which are directly measurable physical quantities for liquids con- 
tained in the laboratory. 

Having obtained our results for the concentration gradients in a binary 
fluid in terms of the aij,  we can see that they could have been obtained by 
application of the thermodynamic equilibrium conditions and the use of 
the generalizations of the Ornstein-Zernike relation. However, the pro- 
cedure we have reviewed has the further advantage that by comparing our 
results with the thermodynamic conditions we obtain proofs of all the results 
for the aij in terms of thermodynamic quantities; these proofs are elementary, 
in marked contrast to the usual sophisticated derivations relying on fluctua- 
tion theory. For completeness we have also included an elementary proof 
of the general Nernst-Einstein relation, whereby we directly obtain the result 

The equilibrium conditions are of course also of interest in their own right. 
Apart from their immediate application to a fluid in a gravitational field, 
for which we have given the general equilibrium conditions, our results are 
also of relevance to electromigration, a topic of increasing theoretical 
interest. 

vll D l b T  = C I C 2 l S C C ~  
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